US 2021/0056146 Al

refined search space. Whichever of the other software proj-
ects in the refined search space has the closest distance to the
modified feature vector can be the closest match to Tensor-
flow. This example is simply illustrative and a similar
process can be applied to software projects other than
Tensorflow. Similarly, other examples can involve a more
components, fewer components, or a different arrangement
of the components shown in FIG. 1

[0027] FIG. 2 is a block diagram of another example of a
system 200 for automatically building a database 116 of
software features for software projects according to some
aspects. The system 200 includes a processor 302 commu-
nicatively coupled with a memory device 204. The processor
302 and the memory device 204 may or may not be part of
a computing device, such as computing device 102.

[0028] The processor 302 can include one processor or
multiple processors. Non-limiting examples of the processor
302 include a Field-Programmable Gate Array (FPGA), an
application-specific integrated circuit (ASIC), a micropro-
cessor, etc. The processor 202 can execute instructions 206
stored in the memory device 204 to perform operations. In
some examples, the instructions 206 can include processor-
specific instructions generated by a compiler or an inter-
preter from code written in any suitable computer-program-
ming language, such as C, C++, C #, etc.

[0029] The memory device 204 can include one memory
device or multiple memory devices. The memory device 204
can be non-volatile and may include any type of memory
device that retains stored information when powered off.
Non-limiting examples of the memory device 204 include
electrically erasable and programmable read-only memory
(EEPROM), flash memory, or any other type of non-volatile
memory. In some examples, at least some of the memory
device can include a medium from which the processor 202
can read instructions 206. A non-transitory computer-read-
able medium can include electronic, optical, magnetic, or
other storage devices capable of providing the processor 302
with computer-readable instructions 206 or other program
code. Non-limiting examples of a non-transitory computer-
readable medium include magnetic disk(s), memory chip(s),
ROM, random-access memory (RAM), an ASIC, a config-
ured processor, optical storage, or any other medium from
which a computer processor can read the instructions 206.

[0030] In some examples, the processor 202 can analyze
descriptive information 104 about a software project 122 to
determine software features 110 of the software project 122.
The processor 202 can then generate a feature vector 114 for
the software project 122 based on the software features 110
of the software project 122. The feature vector 114 can be a
vector of elements 208 in which each element is a numerical
value indicating whether a particular software feature cor-
responding to the element is among the software features
110 of the software project 122 as determined from the
descriptive information 104. The processor 202 can then
store the feature vector 114 in a database 116 having a group
of feature vectors for a group of software projects. The group
of feature vectors can be searchable in response to search
queries 118.

[0031] In some examples, the processor 202 can perform
one or more of the steps shown in FIG. 3 according to some
aspects. In other examples, the processor 202 can implement
more steps, fewer steps, different steps, or a different order

Feb. 25, 2021

of the steps depicted in FIG. 3. The steps of FIG. 3 are
described below with reference to components discussed
above.
[0032] In block 302, a processor 202 analyzes descriptive
information 104 about a software project 122 to determine
software features 110 of the software project 122. For
example, the processor 202 can obtain the descriptive infor-
mation 104 from one or more sources. The processor 202
can then apply a count technique and/or a machine-learning
model to the descriptive information 104 to determine
software features 110 of the software project 122.
[0033] Inblock 304, the processor 202 generates a feature
vector 114 for the software project 122 based on the software
features 110 of the software project 122. The feature vector
114 can be a data structure (e.g., vector) of elements 208 in
which each element is a numerical value indicating whether
a particular software feature corresponding to the element is
among the software features 110 of the software project 122
as determined from the descriptive information 104. The
processor 202 can generate the feature vector 114 by setting
element values (e.g., bit values) in the feature vector 114
based on the software features 110 of the software project
122.
[0034] In block 306, the processor 202 stores the feature
vector 114 in a database 116 having a plurality of feature
vectors for a plurality of software projects. The plurality of
feature vectors can be searchable in response to search
queries 118.
[0035] In some examples, the blocks 302-306 can be
repeated for as many software projects as desired to auto-
matically construct a database 116 of feature vectors, which
can be easily searched and compared. This may enable
developers to quickly and accurately identity software appli-
cations that are compatible with their specific computing
environments, that satisfy particular computing criteria, and/
or that can serve as suitable replacements for existing
software applications in their computing environments.
[0036] The foregoing description of certain examples,
including illustrated examples, has been presented only for
the purpose of illustration and description and is not
intended to be exhaustive or to limit the disclosure to the
precise forms disclosed. Numerous modifications, adapta-
tions, and uses thereof will be apparent to those skilled in the
art without departing from the scope of the disclosure. Some
examples can be combined with other examples to yield
further examples.
1. A system comprising:
a processor; and
a memory device includes instructions that are executable
by the processor for causing the processor to:
analyze descriptive information about a software proj-
ect to determine software features of the software
project, the software features being functional char-
acteristics of the software project;
generate a feature vector for the software project based
on the software features of the software project, the
feature vector being a data structure of elements in
which each element is a numerical value indicating
whether a particular software feature corresponding
to the element is among the software features of the
software project as determined from the descriptive
information; and
store the feature vector in a database having a plurality
of feature vectors for a plurality of software projects,



